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Reaction of phenylacetylene with (butadiene)tantalocene cation
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Abstract

Treatment of the (s-trans-h4-butadiene)tantalocene cation complex 3 (with [CH3B(C6F5)3
−] anion) with phenylacetylene results

in the formation of the regioisomeric alkyne–butadiene coupling products 4a (featuring the phenyl substituent in the b-position)
and 4b (Ph at the a-carbon) in a 70:30 ratio. The minor insertion product 4b was characterized by an X-ray crystal structure
analysis. © 2000 Published by Elsevier Science S.A. All rights reserved.
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1. Introduction

We have recently shown that (s-trans-h4-butadi-
ene)tantalocene cation (3) is readily available by treat-
ment of (s-cis-h4-C4H6)CpTaCl2 (1) with two molar
equivalents of sodium cyclopentadienide, to give (h2-
butadiene)(h5-Cp)2(h1-Cp)Ta (2), followed by selective
Cp-anion abstraction, e.g. employing [Cp2ZrCH3

+]. The
co-product Cp3ZrCH3 is easily removed and the
[Cp2Ta(s-trans-h4-C4H6)+] product (3) isolated in good
yield (with [CH3B(C6F5)3

−] anion, see Scheme 1) [1].
[(Butadiene)TaCp2

+] (3) shows a chemical behavior
similar to its neutral Group 4 analogue [(C4H6)ZrCp2]
[2]. Treatment with excess methylalumoxane results in
the generation of a Ziegler catalyst system of medium
activity for ethene polymerization [3]. The
[(C4H6)TaCp2

+] cation reacts cleanly with a variety of
ketones or nitriles to yield seven-membered metallacy-
cles. 2-Butyne is similarly inserted, but in this case a
metallacyclic (h3-allyl)metallocene cation complex is
formed that was characterized by X-ray diffraction.
Reaction of 3 with the terminal alkyne 1-pentyne gave
a 60:40 mixture of two regioisomeric products (75%

overall yield) [1]. We have now treated (butadi-
ene)tantalocene cation with phenylacetylene and inves-
tigated the regiochemical outcome of this
alkyne-insertion reaction to differentiate between domi-
nating steric or electronic control of the outcome of this
general alkyne insertion reaction. Predominant forma-
tion of a regioisomeric insertion product that features
the phenyl substituent in the a-position to the metal
could be taken as an indication of dominating elec-
tronic control in the actual carbon�carbon coupling
step [4], whereas substantial deviation from such a
regiochemical behavior might be expected if steric fac-
tors predominantly influence the course of the reaction
sequence.

Scheme 1.
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2. Results and discussion

(Butadiene)tantalocene cation (3, with [CH3B(C6F5)3
−

] counteranion) was treated with an excess of pheny-
lacetylene in bromobenzene solution. It required ca. 24
h at 60°C for the reaction to go to completion. Work-
up furnished the 1:1 addition product in ca. 75% yield.
Single crystals suitable for an X-ray crystal structure
analysis were obtained by the diffusion method, i.e. by
letting pentane vapor diffuse into a solution of the
product in dichloromethane. The X-ray analysis re-
vealed the presence of a single regioisomeric pheny-
lacetylene addition product (4b) in the obtained solid.

In the crystal, the cations and anions of the product
4b are well separated, but there is a ca. 1:1 positional
disorder in the hexadienylene group. Averaged bonding
features are given of the disordered parts. The addition
of phenylacetylene to [(butadiene)TaCp2

+] cation 3 has
resulted in a clean carbon�carbon coupling reaction
between the primary acetylene carbon atom and the
terminal butadiene carbon atom. A metallacyclic (1–
3:6-h-hexadienylene)tantalocene cation moiety has re-
sulted, that bears the phenyl substituent regioselectively
at the sp2-carbon atom C6, which is also bonded to the
tantalum center (see Fig. 1 and Scheme 1). The Ta�C6
bond length is 2.321(7) A, . In addition, the carbon
atoms C1�C3 are bonded to tantalum. The resulting
substituted (h3-allyl)Ta unit is slightly unsymmetrical
(Ta�C1 2.38(3) A, , Ta�C2 2.45(2) A, , Ta�C3 2.56(2) A, ).
The corresponding C1�C2 (1.40(3) A, ) and C2�C3
(1.35(3) A, ) bond length difference suggests some partic-
ipation of a s(C1), p(C2, C3) resonance structure of the
h3-allyl unit in complex 4b, which seems to be a charac-
teristic feature of such metallacyclic (p-allyl)metallocene
complexes of the early transition metals [5].

In contrast, two isomeric phenylacetylene addition
products, 4a and 4b, are found in a ca. 70:30 ratio in
solution. Both contain very similar h3-allyl units
bonded to tantalum, as is evident from the correspond-
ing 1H- and 13C-NMR features (see Table 1). The two
compounds are regioisomers featuring the phenyl sub-
stituent either at carbon atom C5 (major isomer 4a) or
at carbon atom C6 of the s-ligand chain (minor isomer
4b, see Scheme 1). This is evident from the typical
alterations of the HC�CPh derived NMR signals
[C(5)H in 4b: d 143.4 (13C), 6.78 (1H); C(5)Ph in 4a: d

153.7 (13C); C(6)H in 4a: d 159.3 (13C), 6.55 (1H);
C(6)Ph in 4b: d 168.1 (13C)].

Thus we conclude that the minor regioisomer (4b)
was characterized by X-ray diffraction. The reaction of
[(butadiene)tantalocene+] cation with phenylacetylene
proceeds rather unselectively. The slightly preferred re-
gioisomeric carbon�carbon coupling product (4a) bears
the phenyl substituent in the b- rather than in the
a-position to the metal. It appears that the regiochemi-
cal outcome of this carbon�carbon coupling process at

Fig. 1. Molecular structure of complex 4b (cation only; one of the
equivalent independent molecules is depicted). Selected bond lengths
(A, ) and angles (°) (averaged values of the two disordered parts):
Ta�C1 2.38(3), Ta�C2 2.45(2), Ta�C3 2.56(2), Ta�C6 2.321(7),
C1�C2 1.40(3), C2�C3 1.35(3), C3�C4 1.50(3), C4�C5 1.49(3), C5�C6
1.37(3), C6�C21 1.50(1); Ta�C1�C2 76.0(14), Ta�C2�C1 70.6(14),
Ta�C2�C3 79.0(12), Ta�C3�C2 70.1(12), Ta�C3�C4 114.2(14),
C1�C2�C3 123(3), C2�C3�C4 126(3), C3�C4�C5 108(2), C4�C5�C6
120(2).

Table 1
Selected 1H- and 13C-NMR data of the regioisomers 4a (major) and
4b (minor) a

4a 4b

1H
Cp 5.10/4.93 5.07/4.89

1.09/2.171-H/H% 1.21/2.24
5.01 4.742-H

4.985.153-H
2.44/2.99 2.82/3.464-H/H%

6.78–5-H
–6-H 6.55

13C
103.1/102.9103.6/101.5Cp

36.4C1 34.4
C2 110.4113.9

110.7 110.1C3
C4 38.138.2

153.7C5 143.4
159.3C6 168.1

a In [D5] bromobenzene at 298 K, atom numbering as depicted in
Scheme 1.

the Group 5 metallocene template is dominated by
steric rather than electronic factors, which would prob-
ably have resulted in a preferred formation of the
a-isomer [4,6].

3. Experimental

All reactions were carried out in an inert atmosphere
(argon) using Schlenk-type glassware or in a glove box.
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For the preparation of the [Cp2Ta(butadiene)+]
[CH3B(C6F5)3

−] starting material (3) and additional gen-
eral information, including a list of the instruments
used for spectroscopic and physical characterization of
the compounds, see Ref. [1].

3.1. Reaction of (butadiene)tantalocene cation with
phenylacetylene, preparation of 4a and 4b

A 400 mg (450 mg) sample of 3 and 0.2 ml of
phenylacetylene were dissolved in 10 ml of bromoben-
zene and stirred for 24 h at 60°C. The product was
precipitated by adding 10 ml of pentane at ambient
temperature. The supernatant solvent was decanted and
the resulting precipitate was dissolved in 5 ml of
dichloromethane and precipitated again with 10 ml of
pentane. After removing the supernatant solvent, the
residue was dried in vacuo to give a brown solid as a
mixture of 4a and 4b; yield of 4, 332 mg (75%), m.p.
173°C. 1H-NMR (bromobenzene-d5, 599.8 MHz, 298
K): The 1H-NMR spectrum showed two regioisomers
4a:4b in a ratio of 70:30. Isomer A: d=6.57–5.54 (m,
1H, 6-H), 5.18–5.13 (m, 1H, 3-H), 5.10 (s, 5H, Cp�H),
5.03–5.00 (m, 1H, 2-H), 4.93 (s, 5H, Cp�H), 2.97 (dd,
2JHH=16.8 Hz, 3JHH=4.2 Hz, 1H, 4�H%), 2.39 (dd,
2JHH=16.8 Hz, 3JHH=8.7 Hz, 1H, 4�H), 2.24 (dd,
2JHH=5.4 Hz, 3JHH=7.8 Hz, 1H, 1-H%), 1.21 (dd,
2JHH=5.4 Hz, 3JHH=13.2 Hz, 1H, 1-H); Isomer B:
d=6.78 (m, 1H, 5-H), 5.07 (s, 5H, Cp�H), 5.01–4.97
(m, 1H, 3-H), 4.89 (s, 5H, Cp�H), 4.77–4.71 (m, 1H,
2-H), 3.46 (dd, 2JHH=15.4 Hz, 3JHH=4.7 Hz, 1H,
4-H%), 2.82 (ddd, 2JHH=15.4 Hz, 3JHH=9.0 Hz,
4JHH=2.4 Hz, 1H, 4-H), 2.17 (dd, 2JHH=5.8 Hz,
3JHH=7.2 Hz, 1H, 1-H%), 1.09 (dd, 2JHH=5.8 Hz,
3JHH=13.1 Hz, 1H, 1-H). The resonances of the
methyltris(pentafluorophenyl)borate anion and of the
phenyl substituents were not distinguished for the two
regioisomers: d=7.27–7.23 (m, 4H), 7.18–7.14 (m,
2H), 6.79–6.77 (m, 4H, Ph), 1.11 (Me�B(C6F5)3).
TOCSY-NMR (bromobenzene-d5, 599.8 MHz, 298 K):
Isomer A: Irradiation at d=2.24 (1-H%) response at
d=6.55 (6-H), 5.15 (3-H), 5.01 (2-H), 2.97 (4-H%), 2.82
(4-H), 1.21 (1-H); Isomer B: Irradiation at d=3.46
(4-H%) response at d=6.78 (5-H), 4.98 (3-H), 4.74
(2-H), 2.82 (4-H), 2.17 (1-H%), 1.09 (1-H). GCOSY-
NMR (brombenzene-d5, 599.8 MHz, 298 K): Isomer A:
d=6.55/2.97, 2.39 (6-H/4-H%, 4-H), 5.15/5.01, 2.97,
2.39 (3-H/2-H, 4-H%, 4-H), 5.01/5.15, 2.24, 1.21 (2-H/3-
H, 1-H%, 1-H), 2.97/6.55, 5.15, 2.39 (4-H%/6-H, 3-H,
4-H), 2.39/6.55, 5.15, 2.97 (4-H/6-H, 3-H, 4-H%), 2.24/
5.01, 1.21 (1-H%/2-H, 1-H), 1.21/5.01, 2.24 (1-H/2-H,
1-H%); Isomer B: d=6.78/3.46, 2.82 (5-H/4-H%, 4-H),
4.98/4.74, 3.46, 2.82 (3-H/2-H, 4-H%, 4-H), 4.74/4.98,
2.17, 1.09 (2-H/3-H, 1-H%, 1-H), 3.46/6.78, 4.98, 2.82
(4-H%/5-H, 3-H, 4-H), 2.82/6.78, 4.98, 3.46 (4-H/3-H,
4-H%), 2.17/4.74, 1.09 (1-H%/2-H, 1-H), 1.09/4.74, 2.17

(1-H/2-H, 1-H%). 13C-NMR (bromobenzene-d5: 150.8
MHz, 298 K): Isomer A: d=159.3 (C6), 158.4 (ipso-C
of Ph), 153.7 (C5), 128.5, 126.8, 124.8 (Ph), 113.9 (C2),
110.7 (C3), 103.6/101.5 (Cp), 38.2 (C4), 36.4 (C1);
Isomer B: d=168.1 (C6), 143.4 (C5), 141.3 (ipso-C of
Ph), 128.4, 127.3, 126.8 (Ph), 110.4 (C2), 110.1 (C3),
103.1/102.9 (Cp), 38.1 (C4), 34.4 (C1); methyltris(pen-
tafluorophenyl)borate anion: d=148.6 (d, 1JCF=235
Hz, o-B(C6F5)3), 137.6 (d, 1JCF=235 Hz, p-B(C6F5)3),
136.6 (d, 1JCF=246 Hz, m-B(C6F5)3), 11.2 (br m,
Me�B(C6F5)3) ppm (ipso-C of C6F5 not found). GH-
SQC-NMR (bromobenzene-d5, 150.8/599.8 MHz, 298
K): Isomer A: d=159.3/6.55 (C6/6-H), 128.5/7.25,
126.8/6.78, 124.8/7.16 (arom.-C/-H), 113.9/5.01 (C2/2-
H), 110.7/5.15 (C3/3-H), 103.6/5.10, 101.5/4.93 (C�Cp/
Cp�H), 38.2/2.97 (C4/4-H%), 38.2/2.82 (C4/4-H),
36.4/2.24 (C1/1-H%), 36.4/1.21 (C1/1-H); Isomer B: d=
143.4/6.78 (C5/5-H), 128.4/7.25, 127.3/7.16, 126.8/6.78
(arom.-C/�H), 110.4/4.74 (C2/2-H), 110.1/4.98 (C3/3-
H), 103.1/5.07, 102.9/4.89 (C�Cp/Cp�H), 38.1/3.46 (C4/
4-H%), 38.1/2.82 (C4/4-H), 34.4/2.17 (C1/1-H%),
34.4/1.09 (C1/1-H); methyltris(pentafluorophenyl)-
borate anion: d=11.2/1.12 (Me�B(C6F5)3) ppm. 11B-
NMR (bromobenzene-d5, 64.2 MHz, 298 K): d= −15.
19F-NMR (bromobenzene-d5, 282.4 MHz, 298 K): d=
−131 (m, 6F, o-CH3B(C6F5)3), −163 (m, 3F, p-
CH3B(C6F5)3), −166 (m, 6F, m-CH3B(C6F5)3). IR
(KBr): ñ (cm−1)=3124 (w), 3051 (vw), 2959 (w), 2934
(w), 2844 (w), 1640 (m), 1595 (w), 1540 (w), 1511 (vs),
1456 (vs), 1379 (w), 1339 (w), 1265 (s), 1084 (vs),
1016/934 (br s), 847 (s), 803 (m), 756 (m), 700 (m), 658
(w), 641 (w), 546 (m). Anal. Calc. for C41H25BF15Ta
(994.4): C, 49.52; H, 2.53; found: C, 49.76; H, 2.70%.

X-ray crystal structure analysis of 4b: diffusion of
pentane vapor into a dichloromethane solution (1.5 ml)
containing 30 mg of the 4a–4b mixture gave single
crystals of 4b suited for X-ray diffraction. formula
C41H25BF15Ta, M=994.37, 0.25×0.25×0.15 mm,
a=12.255(1), b=14.866(1), c=19.201(1) A, , V=
3498.1(4) A, 3, rcalc.=1.888 g cm−3, m=32.55 cm−1,
empirical absorption correction (0.4975T50.641),
Z=4, orthorhombic, space group P212121 (no. 19),
l=0.71073 A, , T=198 K, v and f scans, 30413 reflec-
tions collected (9h, 9k, 9 l), [(sin u)/l ]=0.67 A, −1,
8565 independent (Rint=0.078) and 7982 observed
reflections [I]2s(I)], 570 refined parameters, R=
0.042, wR2=0.087, max. residual electron density 1.78
(−1.68) e A, −3, Flack parameter 0.06(1), positional
disorder in the hexadienylene group (0.48(3): 0.52(3)),
hydrogens calculated and refined as riding atoms.

Data set was collected with a Nonius KappaCCD
diffractometer, using a rotating anode generator
FR591. Programs used: data acquisition COLLECT, data
reduction DENZO-SMN, absorption correction SORTAV,
structure solution SHELXS-97, structure refinement
SHELXL-97, graphics SCHAKAL-92 [7].
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4. Supplementary material

Crystallographic data (excluding structure factors)
for the structure reported in this paper have been
deposited with the Cambridge Crystallographic Data
Centre as supplementary publication no. CCDC-
132962. Copies of the data can be obtained free of
charge on application to The Director, CCDC, 12
Union Road, Cambridge CB2 1EZ, UK [fax: +44-
1223-336033, e-mail: deposit@ccdc.cam.ac.uk].
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